0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class Log{
public static int half(int x) {
int res = 0;
while (x > 1) {
x = x-2;
res++;
}
return res;
}
public static int log(int x) {
int res = 0;
while (x > 1) {
x = half(x);
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 30 rules for P and 5 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
658_0_half_LE(x1, x2, x3, x4, x5) → 658_0_half_LE(x2, x3, x4)
Filtered duplicate args:
658_0_half_LE(x1, x2, x3) → 658_0_half_LE(x2, x3)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 1 && x0[0] <= 1 →* TRUE)∧(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))))
(1) -> (0), if ((658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))))
(1) -> (2), if ((658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))))
(2) -> (3), if ((x1[2] >= 0 && x0[2] > 1 →* TRUE)∧(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))))
(3) -> (0), if ((658_1_log_InvokeMethod(658_0_half_LE(x1[3] + 1, x0[3] - 2)) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))))
(3) -> (2), if ((658_1_log_InvokeMethod(658_0_half_LE(x1[3] + 1, x0[3] - 2)) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))))
(1) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])) ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥))
(2) (>(x1[0], 1)=TRUE∧<=(x0[0], 1)=TRUE ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥))
(3) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(9) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))∧&&(>(x1[0]1, 1), <=(x0[0]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]2, x0[0]2))∧&&(>(x1[0]2, 1), <=(x0[0]2, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0]2, x0[0]2))=658_1_log_InvokeMethod(658_0_half_LE(x1[1]2, x0[1]2)) ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1)))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1)))), ≥))
(10) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))∧&&(>(x1[0]1, 1), <=(x0[0]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))∧&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])) ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1)))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]1)))), ≥))
(11) (&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))∧&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))∧&&(>(x1[0]1, 1), <=(x0[0]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)) ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥))
(12) (&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))∧&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))∧&&(>=(x1[2]1, 0), >(x0[2]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)) ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥))
(13) (>=(x1[2], 0)=TRUE∧>(x0[2], 1)=TRUE∧>(+(x1[2], 1), 1)=TRUE∧<=(-(x0[2], 2), 1)=TRUE ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, +(x1[2], 1))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥))
(14) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [-1] ≥ 0∧[3] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x1[2] ≥ 0∧[-2 + (-1)bso_23] + x0[2] ≥ 0)
(15) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [-1] ≥ 0∧[3] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x1[2] ≥ 0∧[-2 + (-1)bso_23] + x0[2] ≥ 0)
(16) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [-1] ≥ 0∧[3] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x1[2] ≥ 0∧[-2 + (-1)bso_23] + x0[2] ≥ 0)
(17) ([1] + x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] ≥ 0∧[3] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]x0[2] + [bni_22]x1[2] ≥ 0∧[-2 + (-1)bso_23] + x0[2] ≥ 0)
(18) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_22 + (3)bni_22] + [bni_22]x0[2] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)
(19) (&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])) ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))≥COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥))
(20) (>=(x1[2], 0)=TRUE∧>(x0[2], 1)=TRUE ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))≥COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥))
(21) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(22) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(23) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(24) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))), ≥)∧[(3)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(25) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))∧&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))∧&&(>(x1[0]1, 1), <=(x0[0]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[1]1, x0[1]1)) ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥))
(26) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))∧&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))∧&&(>=(x1[2]1, 0), >(x0[2]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)) ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥))
(27) (>(x1[0], 1)=TRUE∧<=(x0[0], 1)=TRUE∧>(-(x1[0], 2), 1)=TRUE ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(0, x1[0])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(0, x1[0])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(0, 1), -(x1[0], 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥))
(28) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x1[0] + [-4] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(29) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x1[0] + [-4] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(30) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x1[0] + [-4] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(31) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[-2] + x1[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[(3)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(32) ([2] + x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[(5)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(33) ([2] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))), ≥)∧[(5)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[0] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(34) (&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))∧&&(>=(x1[2]1, 0), >(x0[2]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))∧&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])) ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥))
(35) (>=(x1[2], 0)=TRUE∧>(x0[2], 1)=TRUE∧>=(+(x1[2], 1), 0)=TRUE∧>(-(x0[2], 2), 1)=TRUE∧>(+(+(x1[2], 1), 1), 1)=TRUE∧<=(-(-(x0[2], 2), 2), 1)=TRUE ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(+(x1[2], 1), 1), -(-(x0[2], 2), 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥))
(36) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] ≥ 0∧[5] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(37) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] ≥ 0∧[5] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(38) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] ≥ 0∧[5] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(39) (x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧[-2] + x0[2] ≥ 0∧x1[2] ≥ 0∧[3] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (2)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(40) (x1[2] ≥ 0∧[2] + x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (4)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(41) (&&(>=(x1[2], 0), >(x0[2], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))=658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))∧&&(>=(x1[2]1, 0), >(x0[2]1, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2]1, x0[2]1))=658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1))∧658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2)))=658_1_log_InvokeMethod(658_0_half_LE(x1[2]2, x0[2]2))∧&&(>=(x1[2]2, 0), >(x0[2]2, 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[2]2, x0[2]2))=658_1_log_InvokeMethod(658_0_half_LE(x1[3]2, x0[3]2)) ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3]1, x0[3]1)))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥))
(42) (>=(x1[2], 0)=TRUE∧>(x0[2], 1)=TRUE∧>=(+(x1[2], 1), 0)=TRUE∧>(-(x0[2], 2), 1)=TRUE∧>=(+(+(x1[2], 1), 1), 0)=TRUE∧>(-(-(x0[2], 2), 2), 1)=TRUE ⇒ COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(+(x1[2], 1), -(x0[2], 2))))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(+(x1[2], 1), 1), -(-(x0[2], 2), 2))))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥))
(43) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] + [2] ≥ 0∧x0[2] + [-6] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(44) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] + [2] ≥ 0∧x0[2] + [-6] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(45) (x1[2] ≥ 0∧x0[2] + [-2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] + [-4] ≥ 0∧x1[2] + [2] ≥ 0∧x0[2] + [-6] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(46) (x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧[-2] + x0[2] ≥ 0∧x1[2] + [2] ≥ 0∧[-4] + x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (2)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(47) (x1[2] ≥ 0∧[2] + x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧x0[2] ≥ 0∧x1[2] + [2] ≥ 0∧[-2] + x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (4)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(48) (x1[2] ≥ 0∧[4] + x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧[2] + x0[2] ≥ 0∧x1[2] + [2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (6)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(49) (x1[2] ≥ 0∧[4] + x0[2] ≥ 0∧x1[2] + [1] ≥ 0∧[2] + x0[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3]1, 1), -(x0[3]1, 2))))), ≥)∧[(-1)Bound*bni_26 + (6)bni_26] + [bni_26]x0[2] + [bni_26]x1[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(658_2_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(658_1_log_InvokeMethod(x1)) = [-1] + x1
POL(658_0_half_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(COND_658_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(COND_658_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))
COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))
658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))) → COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))
COND_658_2_MAIN_INVOKEMETHOD1(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[3], x0[3]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(+(x1[3], 1), -(x0[3], 2))))
658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))) → COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))
COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))
658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))) → COND_658_2_MAIN_INVOKEMETHOD1(&&(>=(x1[2], 0), >(x0[2], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2])))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))))
(0) -> (1), if ((x1[0] > 1 && x0[0] <= 1 →* TRUE)∧(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))))
(1) -> (2), if ((658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[2], x0[2]))))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))))
(0) -> (1), if ((x1[0] > 1 && x0[0] <= 1 →* TRUE)∧(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])) →* 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))))
(1) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))∧658_1_log_InvokeMethod(658_0_half_LE(0, x1[1]))=658_1_log_InvokeMethod(658_0_half_LE(x1[0]1, x0[0]1)) ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥))
(2) (>(x1[0], 1)=TRUE∧<=(x0[0], 1)=TRUE ⇒ COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥NonInfC∧COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[0])))∧(UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥))
(3) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + [-1]x0[0] + [2]x1[0] ≥ 0)
(4) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + [-1]x0[0] + [2]x1[0] ≥ 0)
(5) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + [-1]x0[0] + [2]x1[0] ≥ 0)
(6) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] + [-1]x0[0] + [2]x1[0] ≥ 0)
(7) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] + [-1]x0[0] + [2]x1[0] ≥ 0)
(8) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [2]x1[0] ≥ 0)
(9) (&&(>(x1[0], 1), <=(x0[0], 1))=TRUE∧658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))=658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1])) ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥))
(10) (>(x1[0], 1)=TRUE∧<=(x0[0], 1)=TRUE ⇒ 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥NonInfC∧658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))≥COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))∧(UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥))
(11) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
(12) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
(13) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
(14) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
(15) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
(16) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x0[0] + [bni_18]x1[0] ≥ 0∧[3 + (-1)bso_19] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [2]
POL(COND_658_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(658_1_log_InvokeMethod(x1)) = [-1]x1
POL(658_0_half_LE(x1, x2)) = [-1] + [-1]x2 + x1
POL(658_2_MAIN_INVOKEMETHOD(x1)) = [2] + [-1]x1
POL(0) = 0
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))) → COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))
COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))
658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0]))) → COND_658_2_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <=(x0[0], 1)), 658_1_log_InvokeMethod(658_0_half_LE(x1[0], x0[0])))
COND_658_2_MAIN_INVOKEMETHOD(TRUE, 658_1_log_InvokeMethod(658_0_half_LE(x1[1], x0[1]))) → 658_2_MAIN_INVOKEMETHOD(658_1_log_InvokeMethod(658_0_half_LE(0, x1[1])))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |